4.5 Article

Facile Synthesis of Porous Mn3O4 Nanocrystal-Graphene Nanocomposites for Electrochemical Supercapacitors

Journal

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY
Volume -, Issue 4, Pages 628-635

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/ejic.201100983

Keywords

Manganese; Nanoparticles; Graphene; Energy conversion; Electrochemistry; Supercapacitors

Funding

  1. National Science Foundation for Distinguished Young Scholars of China [51025517]
  2. National 973 project of China [2007CB607606]
  3. National Defense Basic Scientific Research Project [A1320110011]

Ask authors/readers for more resources

In this work, we describe our efforts to produce Mn3O4-graphene nanocomposites based on a convenient and feasible solution based synthetic route under mild conditions. According to transmission electron microscopy (TEM) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) results porous Mn3O4 nanocrystals (NCs), 20-40 nm in size, are uniformly deposited on both sides of the graphene nanosheet (GNS) matrix. Significantly, the as-prepared Mn3O4-graphene nanocomposites exhibit remarkable pseudocapacitive activity including high specific capacitance (236.7 Fg(-1) at 1 Ag-1), good rate capability (133 Fg(-1) at 8 Ag-1), and excellent cyclability (the specific capacitance only decreases by 6.32% of the initial capacitance after 1000 cycles). The excellent pseudocapacitive performance of the Mn3O4-graphene nanocomposites electrode is probably due to the positive synergistic effects between the Mn3O4 and GNS. Namely, the intimate combination of the conductive graphene network with uniformly dispersed porous Mn3O4 NCs not only greatly improves the electrochemical utilization of Mn3O4, but also increases the double-layer capacitance of the graphene sheets. These characteristics make this nanocomposite a very promising electrode material for high performance supercapacitors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available