4.5 Article

Magnetic Properties of [FeFe]-Hydrogenases: A Theoretical Investigation Based on Extended QM and QM/MM Models of the H-Cluster and Its Surroundings

Journal

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY
Volume -, Issue 7, Pages 1043-1049

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/ejic.201001058

Keywords

Computer chemistry; Density functional calculations; Magnetic properties; EPR parameters calculation; Quantum mechanics; Enzymes; Hydrogenases; Hydrogen

Funding

  1. Humboldt Foundation

Ask authors/readers for more resources

In the present contribution, we report a theoretical investigation of the magnetic properties of the dihydrogen-evolving enzyme [FeFe]-hydrogenase, based on both DFT models of the active site (the H-cluster, a Fe6S6 assembly including a binuclear portion directly involved in substrates binding), and QM/MM models of the whole enzyme. Antiferromagnetic coupling within the H-cluster has been treated using the broken-symmetry approach, along with the use of different density functionals. Results of g value calculations turned out to vary as a function of the level of theory and of the extension of the model. The choice of the broken-symmetry coupling scheme also had a significant influence on the calculated g values, for both the active-ready (H-ox) and the CO-inhibited (H-ox-CO) enzyme forms. However, hyper-fine coupling-constant calculations were found to provide more consistent results. This allowed us to show that the experimentally detected delocalization of an unpaired electron at the binuclear subcluster in Desulfovibrio desulfuricans Hox is compatible with a weak interaction between the catalytic centre and a low-weight exogenous ligand like a water molecule.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available