4.5 Article

Inefficient antimicrobial functions of innate phagocytes render infant mice more susceptible to bacterial infection

Journal

EUROPEAN JOURNAL OF IMMUNOLOGY
Volume 43, Issue 5, Pages 1322-1332

Publisher

WILEY-BLACKWELL
DOI: 10.1002/eji.201243077

Keywords

Antimicrobial functions; Infant innate immunity; Phagocytes

Categories

Funding

  1. National Natural Science Foundation of China [81272143]
  2. Natural Science Foundation of Jiangsu Province [K200509]
  3. Jiangsu Innovation Team [LJ201141]
  4. Jiangsu Province Program of Innovative and Entrepreneurial Talents
  5. Science Foundation Ireland Research Frontiers Programme [SFI/08/RFP/BIC1734]

Ask authors/readers for more resources

Neonates and infants, due to the immaturity in their adaptive immunity, are thought to depend largely on the innate immune system for protection against bacterial infection. However, the innate immunity-mediated antimicrobial response in neonates and infants is incompletely characterized. Here, we report that infant mice were more susceptible to microbial sepsis than adult mice, with significantly reduced bacterial clearance from the circulation and visceral organs. Infant PMNs exhibited less constitutive expression of the chemokine receptor CXCR2, and bacterial infection caused further reduction of PMN CXCR2 in infant mice compared with adult mice. This correlates with diminished in vitro chemotaxis of infant PMNs toward the chemoattractant CXCL2 and impaired in vivo recruitment of infant PMNs into the infectious site. Furthermore, consistent with the reduced antimicrobial response in vivo, infant macrophages displayed an impaired bactericidal activity with a defect in phagosome maturation after ingestion of either gram-positive or gram-negative bacteria. Thus, infant mice exhibit an increased vulnerability to microbial infection with delayed bacterial clearance, which is associated with the inefficiency in their innate phagocyte-associated antimicrobial functions characterized by defects in PMN recruitment and macrophage phagosome maturation during microbial sepsis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available