4.5 Article

Identification of non-recurrent submicroscopic genome imbalances: the advantage of genome-wide microarrays over targeted approaches

Journal

EUROPEAN JOURNAL OF HUMAN GENETICS
Volume 16, Issue 3, Pages 395-400

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.ejhg.5201975

Keywords

array CGH; mental retardation; microarray; microdeletion; microduplication; MLPA

Ask authors/readers for more resources

Genome-wide analysis of DNA copy-number changes using microarray-based technologies has enabled the detection of de novo cryptic chromosome imbalances in approximately 10% of individuals with mental retardation. So far, the majority of these submicroscopic microdeletions/duplications appear to be unique, hampering clinical interpretation and genetic counselling. We hypothesised that the genomic regions involved in these de novo submicroscopic aberrations would be candidates for recurrent copy-number changes in individuals with mental retardation. To test this hypothesis, we used multiplex ligation-dependent probe amplification (MLPA) to screen for copy number changes at eight genomic candidate regions in a European cohort of 710 individuals with idiopathic mental retardation. By doing so, we failed to detect additional submicroscopic rearrangements, indicating that the anomalies tested are nonrecurrent in this cohort of patients. The break points flanking the candidate regions did not contain low copy repeats and/or sequence similarities, thus providing an explanation for its non-recurrent nature. On the basis of these data, we propose that the use of genome-wide microarrays is indicated when testing for copy-number changes in individuals with idiopathic mental retardation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available