4.8 Article

Lysozyme-Based Antibacterial Nanomotors

Journal

ACS NANO
Volume 9, Issue 9, Pages 9252-9259

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.5b04142

Keywords

lysozyme; bacteria; nanomotors; ultrasound; biocompatibility

Funding

  1. Defense Threat Reduction Agency Joint Science and Technology Office for Chemical and Biological Defense [HDTRA1-13-1-0002, HDTRA1-14-1-0064]
  2. Scientific and Technological Research Council of Turkey (TUBITAK)

Ask authors/readers for more resources

An effective and rapid bacterial killing nanotechnology strategy based on lysozyme-modified fuel-free nanomotors is demonstrated. The efficient antibacterial property of lysozyme, associated with the cleavage of glycosidic bonds of peptidoglycans present in the bacteria cell wall, has been combined with ultrasound (US)-propelled porous gold nanowire (p-AuNW) motors as biocompatible dynamic bacteria nanofighters. Coupling the antibacterial activity of the enzyme with the rapid movement of these p-AuNWs, along with the corresponding fluid dynamics, promotes enzyme bacteria interactions and prevents surface aggregation of dead bacteria, resulting in a greatly enhanced bacteria-killing capability. The large active surface area of these nanoporous motors offers a significantly higher enzyme loading capacity compared to nonporous AuNWs, which results in a higher antimicrobial activity against Gram-positive and Gram-negative bacteria. Detailed characterization studies and control experiments provide useful insights into the underlying factors controlling the antibacterial performance of the new dynamic bacteria nanofighters. Rapid and effective killing of the Gram-positive Micro coccus lysodeikticus bacteria (69-84% within 1-5 min) is demonstrated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available