4.5 Article Proceedings Paper

High pressure in synthetic fuels production

Journal

JOURNAL OF SUPERCRITICAL FLUIDS
Volume 96, Issue -, Pages 124-132

Publisher

ELSEVIER
DOI: 10.1016/j.supflu.2014.09.031

Keywords

bioliq process; Gasification; Gas cleaning; Synthesis gas; Dimethyl ether

Ask authors/readers for more resources

In regard to climate protection and saving of fossil resources, renewable and sustainable sources for energy, materials and chemicals are required. Among them, biomass is the only renewable carbon source and should be used preferentially for chemicals and materials production on a long term. Also, biomass can significantly contribute to mobility by different types of biofuels. By gasification of biomass or suitable bio-based intermediates the whole variety of today's fuels is accessible on a synthetic basis by appropriate syntheses such as Fischer-Tropsch or methanol reactions. In recent process developments, gasification, gas cleaning and conditioning and syntheses processes are conducted at elevated pressures up to 100 bar. Regarding the special features by using biomass as a feedstock, partly with high temperatures and at increased pressure a variety of specific scientific and technical questions arise along such a process chain. At the example of the bioliq(R) pilot project actually developed at Karlsruhe Institute of Technology (KIT) for synthetic fuels production from biomass, spotlights are provided giving insight into the manifold multidisciplinary area of high pressure research and technology in this field of research and development. In this context, high pressure aspects in gasification, gas cleaning and synthesis of dimethyl ether (DME) are presented. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available