4.4 Article

Effects of recovery time on phosphocreatine kinetics during repeated bouts of heavy-intensity exercise

Journal

EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY
Volume 103, Issue 6, Pages 665-675

Publisher

SPRINGER
DOI: 10.1007/s00421-008-0762-2

Keywords

acidosis; skeletal muscle energetics; magnetic resonance spectroscopy; prior exercise

Ask authors/readers for more resources

The purpose of this study was to examine the kinetics of phosphocreatine (PCr) breakdown in repeated bouts of heavy-intensity exercise separated by three different durations of resting recovery. Healthy young adult male subjects (n = 7) performed three protocols involving two identical bouts of heavy-intensity dynamic plantar flexion exercise separated by 3, 6, and 15 min of rest. Muscle high-energy phosphates and intracellular acid-base status were measured using phosphorus-31 magnetic resonance spectroscopy. In addition, the change in concentration of total haemoglobin (Delta[Hb(tot)]) and deoxy-haemoglobin (Delta[HHb]) were monitored using near-infrared spectroscopy. Prior exercise resulted in an elevated (P < 0.05) intracellular hydrogen ion ([H+](i)) after 3 min (182 +/- 72 (SD) nM; pH 6.73) and 6 min (112 +/- 19 nM; pH 6.95) but not after 15 min (93 +/- 8 nM; pH 7.03) compared to pre-exercise in Con (90 +/- 3 nM; pHi 7.05). The on-transient time constant (tau) of the PCr primary component was not different amongst the exercise bouts. However, in each of the subsequent bouts the amplitude of the PCr slow component, total PCr breakdown, and rise in [H+](i) were reduced (P < 0.05). At exercise onset, Delta[Hb(tot)] was increased (P < 0.05) and the Delta[HHb] kinetic response was slowed (P < 0.05) in the exercise after 3 min, consistent with improved muscle perfusion. In summary, neither the level of acidosis or muscle perfusion at the onset of exercise appeared to be directly related to the time course of the on-transient PCr primary component or the magnitude of the PCr slow component during subsequent bouts of exercise.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available