4.7 Article

Chronic therapy with isosorbide-5-mononitrate causes endothelial dysfunction, oxidative stress, and a marked increase in vascular endothelin-1 expression

Journal

EUROPEAN HEART JOURNAL
Volume 34, Issue 41, Pages 3206-3216

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/eurheartj/ehs100

Keywords

Organic nitrate therapy; Nitrate tolerance; Endothelial dysfunction; Reactive oxygen and nitrogen species; NADPH oxidase; S-glutathionylation of endothelial nitric oxide synthase; Endothelin-1; Bosentan therapy

Funding

  1. Federal Ministry of Education and Research [BMBF 01EO1003]

Ask authors/readers for more resources

Isosorbide-5-mononitrate (ISMN) is one of the most frequently used compounds in the treatment of coronary artery disease predominantly in the USA. However, ISMN was reported to induce endothelial dysfunction, which was corrected by vitamin C pointing to a crucial role of reactive oxygen species (ROS) in causing this phenomenon. We sought to elucidate the mechanism how ISMN causes endothelial dysfunction and oxidative stress in vascular tissue. Male Wistar rats (n 69 in total) were treated with ISMN (75 mg/kg/day) or placebo for 7 days. Endothelin (ET) expression was determined by immunohistochemistry in aortic sections. Isosorbide-5-mononitrate infusion caused significant endothelial dysfunction but no tolerance to ISMN itself, whereas ROS formation and nicotinamide adenine dinucleotidephosphate (NADPH) oxidase activity in the aorta, heart, and whole blood were increased. Isosorbide-5-mononitrate up-regulated the expression of NADPH subunits and caused uncoupling of the endothelial nitric oxide synthase (eNOS) likely due to a down-regulation of the tetrahydrobiopterin-synthesizing enzyme GTP-cyclohydrolase-1 and to S-glutathionylation of eNOS. The adverse effects of ISMN were improved in gp91phox knockout mice and normalized by bosentan in vivo/ex vivo treatment and suppressed by apocynin. In addition, a strong increase in the expression of ET within the endothelial cell layer and the adventitia was observed. Chronic treatment with ISMN causes endothelial dysfunction and oxidative stress, predominantly by an ET-dependent activation of the vascular and phagocytic NADPH oxidase activity and NOS uncoupling. These findings may explain at least in part results from a retrospective analysis indicating increased mortality in post-infarct patients in response to long-term treatment with mononitrates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available