4.5 Article

Changes in tannin solubility and microstructure of high hydrostatic pressure-treated persimmon cubes during storage at 4 A°C

Journal

EUROPEAN FOOD RESEARCH AND TECHNOLOGY
Volume 237, Issue 1, Pages 9-17

Publisher

SPRINGER
DOI: 10.1007/s00217-013-2010-1

Keywords

Persimmon; High hydrostatic pressure; Tannin; Shelf life; Microstructure

Funding

  1. Spanish Ministry of Science and Innovation [AGL2008-04-798-C02-02]
  2. FPU

Ask authors/readers for more resources

Condensed tannins are important bioactive compounds largely present in persimmon (Diospyros kaki L.f.). The aim of this work was to study the effect of the structural changes occurred during refrigerated storage in persimmon cubes treated with high hydrostatic pressure (HHP) on the solubility and location of tannins, and some physicochemical properties. Persimmon cubes were submitted to 200 MPa for 3 and 6 min at 37 A degrees C and stored at 4 A degrees C for 28 days. The microstructural study was carried out by low-temperature scanning electron microscopy, light microscopy and transmission electron microscopy. The physicochemical properties studied were total soluble tannins (TST), total soluble solids (TSS), pH, lightness, firmness and cohesiveness. Microstructural studies showed that HHP treatment causes cell wall and membrane disruption in persimmon tissue. Retraction of the tonoplast and loss of cell turgor were greater as the storage time increased. Precipitated tannins inside and outside the cells and a progressive separation of adjacent cells during the storage time could be observed. Significant (P < 0.05) decreases in TST, TSS and lightness as well as a significant (P < 0.05) increase in pH took place in HHP-treated samples after 7 days of storage. Samples treated for 3 min showed higher firmness than the rest of the samples during the whole storage period, whereas HHP-treated samples showed higher cohesiveness than the control samples. The effects of HHP treatments and later storage at 4 A degrees C on microstructure, tannin solubility and extractability, and some physicochemical properties of persimmon cubes depend on the treatment conditions and the storage time. HHP treatment might decrease persimmon astringency as well as increase bioactive compounds accessibility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available