4.1 Article

Conformational rearrangements in the S6 domain and C-linker during gating in CNGA1 channels

Journal

Publisher

SPRINGER
DOI: 10.1007/s00249-009-0491-4

Keywords

Gating; CNGA1 channels; Cd2+ inhibition; Pore; S6 domain; C-linker

Categories

Funding

  1. HFSP
  2. Italian Ministry
  3. CIPE (GRAND FVG)
  4. FIRB
  5. MIUR

Ask authors/readers for more resources

This work completes previous findings and, using cysteine scanning mutagenesis (CSM) and biochemical methods, provides detailed analysis of conformational changes of the S6 domain and C-linker during gating of CNGA1 channels. Specific residues between Phe375 and Val424 were mutated to a cysteine in the CNGA1 and CNGA1(cys-free) background and the effect of intracellular Cd2+ or cross-linkers of different length in the open and closed state was studied. In the closed state, Cd2+ ions inhibited mutant channels A406C and Q409C and the longer cross-linker reagent M-4-M inhibited mutant channels A406C(cys-free) and Q409C(cys-free). Cd2+ ions inhibited mutant channels D413C and Y418C in the open state, both constructed in a CNGA1 and CNGA1(cys-free) background. Our results suggest that, in the closed state, residues from Phe375 to approximately Ala406 form a helical bundle with a three-dimensional (3D) structure similar to those of the KcsA; furthermore, in the open state, residues from Ser399 to Gln409 in homologous subunits move far apart, as expected from the gating in K+ channels; in contrast, residues from Asp413 to Tyr418 in homologous subunits become closer in the open state.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available