4.5 Article

Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum wheat

Journal

EUPHYTICA
Volume 177, Issue 2, Pages 207-221

Publisher

SPRINGER
DOI: 10.1007/s10681-010-0242-8

Keywords

Durum wheat; Drought stress; Microsatellite marker

Ask authors/readers for more resources

Grain yield and yield components are the main important traits involved in durum wheat (Triticum turgidum L.) improvement programs. The purpose of this research was to identify quantitative trait loci (QTL) associated with yield components such as 1000 grain weight (TGW), grain weight per spike (GWS), number of grains per spike (GNS), spike number per m(2) (SN), spike weight (SW), spike harvest index (SHI) and harvest index (HI) using microsatellite markers. Populations of F(3) and F(4) lines derived from 151 F(2) individuals developed from a cross between Oste-Gata, a drought tolerant, and Massara-1, a drought susceptible durum wheat genotypes, were used. The populations were evaluated under four environmental conditions including two irrigation regimes of drought stress at terminal growth stages and normal field conditions in two growing seasons. Two hundred microsatellite markers reported for A and B genomes of bread wheat were used for parental polymorphism analysis and 30 polymorphic markers were applied to genotype 151 F(2:3) families. QTL analysis was performed using genome-wide single marker regression analysis (SMA) and composite interval mapping (CIM). The results of SMA revealed that about 20% of the phenotypic variation of harvest index and TGW could be explained by Xcfd22-7B and Xcfa2114-6A markers in different environmental conditions. Similarly, Xgwm181-3B, Xwmc405-7B and Xgwm148-3B and marker Xwmc166-7B were found to be associated with SHI and GWS, respectively. A total of 20 minor and major QTL were detected; five for TGW, two for GWS, two for GNS, three for SN, five for HI, two for SHI and one for SW. The mapped QTL associated with ten markers. Moreover, some of these QTL were prominent and stable under drought stress and non drought stress environments and explained up to 49.5% of the phenotypic variation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available