3.9 Article

Morphology of the Trypanosome Bilobe, a Novel Cytoskeletal Structure

Journal

EUKARYOTIC CELL
Volume 11, Issue 6, Pages 761-772

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/EC.05287-11

Keywords

-

Funding

  1. Austrian Science Fund (FWF) [P 22276-B12]
  2. Austrian Science Fund (FWF) [P 24383, P 22276] Funding Source: researchfish

Ask authors/readers for more resources

The trypanosome bilobe is a cytoskeletal structure of unclear function. To date, four proteins have been shown to localize stably to it: TbMORN1, TbLRRP1, TbCentrin2, and TbCentrin4. In this study, a combination of immunofluorescence microscopy and electron microscopy was used to explore the morphology of the bilobe and its relationship to other nearby cytoskeletal structures in the African trypanosome procyclic trypomastigote. The use of detergent/salt-extracted flagellum preparations was found to be an effective way of discerning features of the cytoskeletal ultrastructure that are normally obscured. TbMORN1 and TbCentrin4 together define a hairpin structure comprising an arm of TbCentrin4 and a fishhook of TbMORN1. The two arms flank a specialized microtubule quartet and the flagellum attachment zone filament, with TbMORN1 running alongside the former and TbCentrin4 alongside the latter. The hooked part of TbMORN1 sits atop the flagellar pocket collar marked by TbBILBO1. The TbMORN1 bilobe occasionally exhibits tendrillar extensions that seem to be connected to the basal and probasal bodies. The TbMORN1 molecules present on these tendrils undergo higher rates of turnover than those for molecules on the main bilobe structure. These observations have been integrated with previous detailed descriptions of the cytoskeletal elements in trypanosome cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available