3.9 Article

G1/S Transcription Factor Orthologues Swi4p and Swi6p Are Important but Not Essential for Cell Proliferation and Influence Hyphal Development in the Fungal Pathogen Candida albicans

Journal

EUKARYOTIC CELL
Volume 10, Issue 3, Pages 384-397

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/EC.00278-10

Keywords

-

Funding

  1. Canadian Institutes of Health Research [IGI-78908]
  2. Canadian Institutes of Health Research Team [CTP79843]

Ask authors/readers for more resources

The G(1)/S transition is a critical control point for cell proliferation and involves essential transcription complexes termed SBF and MBF in Saccharomyces cerevisiae or MBF in Schizosaccharomyces pombe. In the fungal pathogen Candida albicans, G(1)/S regulation is not clear. To gain more insight into the G(1)/S circuitry, we characterized Swi6p, Swi4p and Mbp1p, the closest orthologues of SBF (Swi6p and Swi4p) and MBF (Swi6p and Mbp1p) components in S. cerevisiae. The mbp1 Delta/Delta cells showed minor growth defects, whereas swi4 Delta/Delta and swi6 Delta/Delta yeast cells dramatically increased in size, suggesting a G(1) phase delay. Gene set enrichment analysis (GSEA) of transcription profiles revealed that genes associated with G(1)/S phase were significantly enriched in cells lacking Swi4p and Swi6p. These expression patterns suggested that Swi4p and Swi6p have repressing as well as activating activity. Intriguingly, swi4 Delta/Delta swi6 Delta/Delta and swi4 Delta/Delta mbp1 Delta/Delta strains were viable, in contrast to the situation in S. cerevisiae, and showed pleiotropic phenotypes that included multibudded yeast, pseudohyphae, and intriguingly, true hyphae. Consistently, GSEA identified strong enrichment of genes that are normally modulated during C. albicans-host cell interactions. Since Swi4p and Swi6p influence G(1) phase progression and SBF binding sites are lacking in the C. albicans genome, these factors may contribute to MBF activity. Overall, the data suggest that the putative G(1)/S regulatory machinery of C. albicans contains novel features and underscore the existence of a relationship between G(1) phase and morphogenetic switching, including hyphal development, in the pathogen.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available