3.9 Article

H3K9 Methylation Regulates Growth and Development in Aspergillus fumigatus

Journal

EUKARYOTIC CELL
Volume 7, Issue 12, Pages 2052-2060

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/EC.00224-08

Keywords

-

Funding

  1. U. S. Department of Agriculture [59-0790-3-081]
  2. NSF [MCB-0236393]
  3. NIH [R01 AI065728-01A1]

Ask authors/readers for more resources

In most species, chromatin remodeling mediates critical biological processes ranging from development to disease states. In fungi within the genus Aspergillus, chromatin remodeling may regulate expression of metabolic gene clusters, but other processes regulated by chromatin structure remain to be elucidated. In many eukaryotic species, methylation of lysine 9 of histone 3 (H3K9) is a hallmark of heterochromatin formation and subsequent gene silencing. The sole H3K9 methyltransferase in Schizosaccharomyces pombe is Clr4. We report that disruption of the Clr4 homolog in the pathogenic mold Aspergillus fumigatus (ClrD), which is involved in both mono- and trimethylation of H3K9, results in several growth abnormalities. Developmental defects in Delta AfclrD include reduction in radial growth, reduction in conidial production, and delayed conidiation after developmental competence mediated by delayed expression of brlA, the master regulator of conidiophore development. Sensitivity of Delta AfclrD to 6-azauracil suggests that ClrD influences transcriptional processing in A. fumigatus. Despite growth abnormalities, macrophage assays suggest ClrD may be dispensable for host interactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available