4.6 Article

High-resolution records of the response of coastal wetland systems to long-term and short-term sea-level variability

Journal

ESTUARINE COASTAL AND SHELF SCIENCE
Volume 84, Issue 4, Pages 493-508

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ecss.2009.06.030

Keywords

salt marsh; sea level; accretion; climate change; sediment dynamics; Long Island

Funding

  1. New York Sea Grant
  2. National Park Service

Ask authors/readers for more resources

While it is well known that coastal systems respond to long-term sea-level changes, the importance of short-term sea-level dynamics is often overlooked. Year-to-year variability in annual mean sea level along the North American Atlantic coast is part of a regionally consistent pattern that is coupled to low atmospheric pressure and high wind field anomalies persisting over 100s to 1000s of km. These short-term sea-level dynamics, along with long-term sea-level changes are shown to be closely coupled to a set of high resolution excess Pb-210 geochronologies from four physiographically distinct salt marsh estuaries surrounding Long Island, NY, USA. However, the degree to which a marsh responds to either forcing depends on its physiographic setting. Accretion and mineral deposition rates in marshes situated in embayments with long fetches and low-tidal ranges are shown to respond most to the short-term dynamically driven changes in sea level. On the other hand, accretion and mineral deposition in a marsh in an embayment with a high-tidal range and reduced fetch best track the long-term changes in mean sea level, presumably because the physiography limited the meteorological drivers of short-term sea-level change. The close coupling between marsh accretion, physiographic setting and indices of sea-level change indicates that these coastal system respond both differently and rapidly (2-5 yr) to climate variability. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available