4.5 Article

Increased Variability of Microbial Communities in Restored Salt Marshes nearly 30 Years After Tidal Flow Restoration

Journal

ESTUARIES AND COASTS
Volume 35, Issue 4, Pages 1049-1059

Publisher

SPRINGER
DOI: 10.1007/s12237-012-9502-2

Keywords

Impoundment; TRFLP; 16S rRNA; Diversity; Long Island Sound; Disturbance

Funding

  1. National Science Foundation [DEB-0814586]
  2. Long Island Sound Fund
  3. George and Carol Milne Endowment at Connecticut College
  4. Division Of Environmental Biology
  5. Direct For Biological Sciences [0814586] Funding Source: National Science Foundation

Ask authors/readers for more resources

We analyzed microbial diversity and community composition from four salt marsh sites that were impounded for 40-50 years and subsequently restored and four unimpounded sites in southeastern Connecticut over one growing season. Community composition and diversity were assessed by terminal restriction fragment length polymorphism (TRFLP) and sequence analysis of 16S ribosomal RNA (rRNA) genes. Our results indicated diverse communities, with sequences representing 14 different bacterial divisions. Proteobacteria, Bacteroidetes, and Planctomycetes dominated clone libraries from both restored and unimpounded sites. Multivariate analysis of the TRFLP data suggest significant site, sample date, and restoration status effects, but the exact causes of these effects are not clear. Composition of clone libraries and abundance of bacterial 16S rRNA genes were not significantly different between restored sites and unimpounded sites, but restored sites showed greater temporal and spatial variability of bacterial communities based on TRFLP profiles compared with unimpounded sites, and variability was greatest at sites more recently restored. In summary, our study suggests there may be long-lasting effects on stability of bacterial communities in restored salt marshes and raises questions about the resilience and ultimate recovery of the communities after chronic disturbance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available