4.4 Article

Tunneling transport in a graphene-based ferromagnet/insulator/d-wave superconductor junction

Journal

EPL
Volume 87, Issue 2, Pages -

Publisher

EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY
DOI: 10.1209/0295-5075/87/27008

Keywords

-

Funding

  1. National Natural Science Foundation of China [10674058, 60876065]
  2. State Key Program for Basic Research of China [2006CB921803, 2009CB929504]

Ask authors/readers for more resources

We study the electronic transport in a graphene-based ferromagnet/insulator/d-wave superconductor (F/I/S) junction by use of the Dirac-Bogoliubov-de Gennes equation. The effects of spin polarization in the F region, barrier strength in the I region, and Fermi wave vector mismatch between the F and S regions are taken into account. It is found that the differential conductance and shot noise are strongly modulated by these parameters and display different features compared with other junctions. One interesting finding is that, at zero bias voltage and the maximum orientation angle of the superconductive gap alpha = pi/4, the conductance, shot noise and Fano factor are only controlled by one parameter, i.e. the spin polarization, irrespective of all the other parameters. This universal feature could be applied to measure the magnitude of the spin polarization induced in graphene.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available