4.4 Article

Canonical structure of dynamical fluctuations in mesoscopic nonequilibrium steady states

Journal

EPL
Volume 82, Issue 3, Pages -

Publisher

EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY
DOI: 10.1209/0295-5075/82/30003

Keywords

-

Ask authors/readers for more resources

We give the explicit structure of the functional governing the dynamical density and current fluctuations for a mesoscopic system in a nonequilibrium steady state. Its canonical form determines a generalised Onsager-Machlup theory. We assume that the system is described as a Markov jump process satisfying a local detailed balance condition such as typical for stochastic lattice gases and for chemical networks. We identify the entropy current and the traffic between the mesoscopic states as extra terms in the fluctuation functional with respect to the equilibrium dynamics. The density and current fluctuations are coupled in general, except close to equilibrium where their decoupling explains the validity of entropy production principles. Copyright (c) EPLA, 2008.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available