4.4 Article

Doping evolution of itinerant magnetic fluctuations in Fe-based pnictides

Journal

EPL
Volume 83, Issue 6, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1209/0295-5075/83/67003

Keywords

-

Funding

  1. Volkswagen Foundation

Ask authors/readers for more resources

Employing the four-band tight-binding model, we study theoretically the doping dependence of the spin response in the normal state of novel Fe-based pnictide superconductors. We show that the commensurate spin density wave (SDW) transition that arises due to interband scattering between the hole alpha-pockets and the electron beta-pockets disappears already at the doping concentration x approximate to 0.04 reflecting the evolution of the Fermi surfaces. Correspondingly, with further increase of the doping the antiferromagnetic fluctuations are suppressed for x > 0.1 and the imaginary part of the spin susceptibility at antiferromagnetic wave vector becomes nearly temperature independent. At the same time, we observe that the uniform susceptibility deviates from the Pauli-like behavior and is increasing with increasing temperature reflecting the activation processes for the alpha-Fermi surfaces up to temperatures of about T = 800 K. With increase of the doping the absolute value of the uniform susceptibility lowers and its temperature dependence changes. In particular, it is a constant at low temperatures and then decreases with increasing temperature. We discuss our results in a context of recent experimental data. Copyright (C) EPLA, 2008

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available