4.4 Article

Magnetization reversal and nonexponential relaxation via instabilities of internal spin waves in nanomagnets

Journal

EPL
Volume 82, Issue 1, Pages -

Publisher

EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY
DOI: 10.1209/0295-5075/82/17007

Keywords

-

Ask authors/readers for more resources

A magnetic particle with atomic spins ordered in an unstable direction is an example of a false vacuum that decays via excitation of internal spin waves. Coupled evolution of the particle's magnetization (or the vacuum state) and spin waves, considered in the time-dependent vacuum frame, leads to a peculiar relaxation that is very fast at the beginning but slows down to a nonexponential long tail at the end. The two main scenarios are linear and exponential spin-wave instabilities. For the former, the longitudinal and transverse relaxation rates have been obtained analytically. Numerical simulations show that the particle's magnetization strongly decreases in the middle of reversal and then recovers. Copyright (c) EPLA, 2008.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available