4.2 Review

Sexually dimorphic expression of KCC2 and GABA function

Journal

EPILEPSY RESEARCH
Volume 80, Issue 2-3, Pages 99-113

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.eplepsyres.2008.04.013

Keywords

GABA; substantia nigra; hippocampus; sex; autism; epilepsy

Funding

  1. NIH NINDS [45243]
  2. Rett Syndrome Research Foundation

Ask authors/readers for more resources

GABA(A) receptors have an age-adapted function in the brain. During early development, they mediate depolarizing effects, which result in activation of calcium-sensitive signaling processes that are important for the differentiation of the brain. In more mature stages of development and in adults, GABA(A) receptors acquire their classical hyperpolarizing signaling. The switch from depolarizing to hyperpolarizing GABA(A)-ergic signaling is triggered through the developmental shift in the balance of chloride cotransporters that either increase (i.e. NKCC1) or decrease (i.e. KCC2) intracellular chloride. The maturation of GABA(A) signaling follows sex-specific patterns, which correlate with the developmental expression profiles of chloride cotransporters. This has first been demonstrated in the substantia nigra, where the switch occurs earlier in females than in mates. As a result, there are sensitive periods during development when drugs or conditions that activate GABA(A) receptors mediate different transcriptional effects in mates and females. Furthermore, neurons with depolarizing or hyperpolarizing GABA(A)-ergic signaling respond differently to neurotrophic factors like estrogens. Consequently, during sensitive developmental periods, GABA(A) receptors may act as broadcasters of sexually differentiating signals, promoting gender-appropriate brain development. This has particular implications in epilepsy, where both the pathophysiology and treatment of epileptic seizures involve GABA(A) receptor activation. It is important therefore to study separately the effects of these factors not only on the course of epilepsy but also design new treatments that may not necessarily disturb the gender-appropriate brain development. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available