4.4 Review

Focus on desynchronization rather than excitability: A new strategy for intraencephalic electrical stimulation

Journal

EPILEPSY & BEHAVIOR
Volume 38, Issue -, Pages 32-36

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.yebeh.2013.12.034

Keywords

Epilepsy; Excitability; Synchronization; DBS; Temporally coded

Funding

  1. Brazilian agency CNPq
  2. Brazilian agency FAPEMIG
  3. Brazilian agency CAPES
  4. Brazilian agency PRPq/UFMG

Ask authors/readers for more resources

Epilepsy is a severely debilitating brain disease, often associated with premature death, which has an urgent need for alternative methods of treatment. In fact, roughly 25% of patients with epilepsy do not have seizures satisfactorily controlled by pharmacological treatment, and 30% of these patients with treatment-refractory seizures are not even eligible for ablative surgery. Epilepsy is most readily identifiable by its seizures and/or paroxysmal events, mostly viewed as spontaneously recurrent and unpredictable, which are caused by stereotyped changes in neurological function associated with hyperexcitability and hypersynchronicity of the underlying neural networks. Treatment has strongly been based on the fixed goal of depressing neuronal activity, working under the veiled assumption that hyperexcitability would lead to synchronous neuronal activity and, therefore, to seizure. Over the last 20-30 years, the emergence of electrical (ES) of deep brain structures, a practicable option for treating patients with otherwise untreatable seizures, has broadened our understanding of anticonvulsant mechanisms that conceptually differ from those of pharmacological treatment. Conversely, the research on ES therapy applied to epilepsy is contributing significantly to untwine the phenomena of excitation from that of synchronization as potential target mechanisms for abolishing seizures and predicting paroxysmal events. This paper is, thus, an addendum to other reviews on the subject of ES therapy in epilepsy which focuses on the desynchronization effect ES has on epileptogenic neural networks rather than its effect on overall brain excitability. (C) 2014 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available