4.5 Article

Temporal and spatial characteristics of high frequency oscillations as a new biomarker in epilepsy

Journal

EPILEPSIA
Volume 56, Issue 2, Pages 197-206

Publisher

WILEY
DOI: 10.1111/epi.12844

Keywords

Biomarker; Epilepsy surgery; High frequency oscillations; Automatic detection; Invasive EEG

Funding

  1. Morris Coole Award of the International League Against Epilepsy
  2. German Research Foundation
  3. Brain-Links-BrainTools Cluster of Excellence - German Research Foundation (DFG) [EXC 1086]

Ask authors/readers for more resources

ObjectiveInterictal high frequency oscillations (HFOs) are a promising candidate as a biomarker in epilepsy as well as for defining the seizure-onset zone as for the prediction of the surgical outcome after epilepsy surgery. The purpose of the study is to investigate properties of HFOs in long-term recordings with respect to the sleep-wake cycle and anatomic regions to verify previous results based on observations from short intervals and patients mainly with temporal lobe epilepsy to the analysis of hours of recordings and focal epilepsies with extratemporal origin. MethodsAutomatic HFO detection using a radial basis function neural network detector was performed in long-term recordings of 15 presurgical patients investigated with subdural strip, grid, and depth contacts. Periods with visual marked sleep stages based on parallel scalp recordings from two consecutive nights were compared to awake intervals. Statistical analysis was based on the Kruskal-Wallis test, Mann-Whitney U-test and Spearman's rank correlations. ResultsHFO rates in seizure-onset contacts differed from other brain regions independent of the sleep-wake cycle. For temporal contacts, the HFO rate increased significantly with sleep stage. In addition, contacts covering the parietal lobe, including rolandic cortex, showed a significant increase of HFO rates during sleep. However, no significant HFO rate changes depending on the sleep-wake cycle were found for frontal contacts. SignificanceThe rate of interictal HFOs predicted the SOZ with statistical significance at the group level, but properties other than the HFO rate may need to be considered to improve the diagnostic utility of HFOs. This study gives evidence that the modulation of HFO rates by states of the sleep-wake cycle has particular characteristics within different neocortical regions and in mesiotemporal structures, and contributes to the establishment of HFOs as a biomarker in epilepsy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available