4.5 Article

Dispersive solid-liquid phase microextraction based on nanomagnetic Preyssler heteropolyacid: A novel method for the preconcentration of nortriptyline

Journal

JOURNAL OF SEPARATION SCIENCE
Volume 38, Issue 9, Pages 1610-1617

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/jssc.201401487

Keywords

Dispersive solid-liquid microextraction; Nanomagnetite; Nortriptyline; Preyssler heteropolyacids

Funding

  1. Payame Noor University of Mashhad, Iran

Ask authors/readers for more resources

In this study, a new, simple, rapid, and efficient method combined with ultraviolet visible spectrophotometry and high-performance liquid chromatography analysis was developed for the extraction and determination of nortriptyline. The tendency of the Preyssler tungsten heteropolyacid, H-14[NaP5W30O110], immobilized on the surface of mesoporous nanomagnetite to adsorb the drug from the solution has been investigated. This method involves the use of an appropriate mixture of nanosorbent that was homogenized in disperser solvent (1.0 mL, ethanol). At first, the mixture containing the nanomagnetic sorbent and disperser solvent was injected into the aqueous sample, and a cloudy solution was formed. Subsequently, separation of the two phases was carried out using a magnet. In the second stage, analyte was desorbed from the sorbent by methanol as the optimal desorption solvent using sonication method. The elution solvent containing enriched analyte was introduced to the instruments for further analysis. Optimization of experimental conditions with respect to the extraction efficiency was investigated. The method was linear in the range of 25-5000, while the detection limit (LOD = 3S(B)/m) was 7.9 ng/mL and the limit of quantification (LOQ = 10S(B)/m) was 26.4 ng/mL. The relative standard deviation was 4.66%. The method was successfully applied to human hair samples.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available