4.5 Review

Mammalian target of rapamycin (mTOR) inhibition as a potential antiepileptogenic therapy: From tuberous sclerosis to common acquired epilepsies

Journal

EPILEPSIA
Volume 51, Issue 1, Pages 27-36

Publisher

WILEY
DOI: 10.1111/j.1528-1167.2009.02341.x

Keywords

Seizure; Epileptogenesis; Epilepsy; Traumatic brain injury

Funding

  1. National Institutes of Health [K02 NS045583, R01 NS056872]
  2. Tuberous Sclerosis Alliance
  3. Citizens United for Research in Epilepsy
  4. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [R01NS056872, K02NS045583] Funding Source: NIH RePORTER

Ask authors/readers for more resources

P>Most current treatments for epilepsy are symptomatic therapies that suppress seizures but do not affect the underlying course or prognosis of epilepsy. The need for disease-modifying or antiepileptogenic treatments for epilepsy is widely recognized, but no such preventive therapies have yet been established for clinical use. A rational strategy for preventing epilepsy is to target primary signaling pathways that initially trigger the numerous downstream mechanisms mediating epileptogenesis. The mammalian target of rapamycin (mTOR) pathway represents a logical candidate, because mTOR regulates multiple cellular functions that may contribute to epileptogenesis, including protein synthesis, cell growth and proliferation, and synaptic plasticity. The importance of the mTOR pathway in epileptogenesis is best illustrated by tuberous sclerosis complex (TSC), one of the most common genetic causes of epilepsy. In mouse models of TSC, mTOR inhibitors prevent the development of epilepsy and underlying brain abnormalities associated with epileptogenesis. Accumulating evidence suggests that mTOR also participates in epileptogenesis due to a variety of other causes, including focal cortical dysplasia and acquired brain injuries, such as in animal models following status epilepticus or traumatic brain injury. Therefore, mTOR inhibition may represent a potential antiepileptogenic therapy for diverse types of epilepsy, including both genetic and acquired epilepsies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available