4.5 Article

Anticonvulsant and proconvulsant actions of 2-deoxy-d-glucose

Journal

EPILEPSIA
Volume 51, Issue 8, Pages 1385-1394

Publisher

WILEY
DOI: 10.1111/j.1528-1167.2010.02593.x

Keywords

2-Deoxy-d-glucose; 3-Methyl-glucose; Glucose metabolism; Glycolysis; Pentose phosphate pathway; Ketogenic diet; Kindling

Funding

  1. NINDS
  2. UC Davis Clinical and Translational Science Center (NCRR) [UL1 RR024146]
  3. Epilepsy Research Foundation
  4. Epilepsy Foundation

Ask authors/readers for more resources

P>Purpose: 2-Deoxy-d-glucose (2-DG), a glucose analog that accumulates in cells and interferes with carbohydrate metabolism by inhibiting glycolytic enzymes, has anticonvulsant actions. Recognizing that severe glucose deprivation can induce seizures, we sought to determine whether acute treatment with 2-DG can promote seizure susceptibility by assessing its effects on seizure threshold. For comparison, we studied 3-methyl-glucose (3-MG), which like 2-DG accumulates in cells and reduces glucose uptake, but does not inhibit glycolysis. Methods: Mice were treated with 2-DG or 3-MG and the seizure threshold determined in the 6-Hz test, the mouse electroshock seizure threshold (MEST) test, and the intravenous pentylenetetrazol (i.v. PTZ) or kainic acid (i.v. KA) seizure threshold tests. 2-DG was also tested in fully amygdala-kindled rats. Results: 2-DG (125-500 mg/kg, i.p., 30 min before testing) significantly elevated the seizure threshold in the 6-Hz seizure test. 2-DG (250-500 mg/kg) decreased the threshold in the MEST and i.v. PTZ and i.v. KA tests. 3-MG had no effect on seizure threshold in the 6-Hz test but, like 2-DG, decreased seizure threshold in the i.v. PTZ test. 2-DG (250 and 500 mg/kg, i.p., 30 min before testing) had no effect on amygdala-kindled seizures. Conclusions: Although 2-DG protects against seizures in the 6-Hz seizure test, it promotes seizures in some other models. The proconvulsant action may relate to reduced glucose uptake, whereas the anticonvulsant action may require inhibition of glycolysis and shunting of glucose metabolism through the pentose phosphate pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available