4.5 Article

Catalytic activity and thermostability of enzymes immobilized on silanized surface: Influence of the crosslinking agent

Journal

ENZYME AND MICROBIAL TECHNOLOGY
Volume 52, Issue 6-7, Pages 336-343

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.enzmictec.2013.02.018

Keywords

Crosslinkers; Glucose-6-phosphate dehydrogenase (G6PDH); Multimeric enzyme; Enzyme immobilization; Silane; Thermostability

Funding

  1. AUF (Agence Universitaire de la Francophonie)

Ask authors/readers for more resources

In this work, we investigate the influence of crosslinkers on the operational and heat stability of immobilized enzymes on a silanized silicon surface. To this end, gluccise-6-phosphate dehydrogenase (G6PDH), a model multimeric enzyme, was attached through bifunctional crosslinkers able to bind covalently the -NH2 in the silane layer and of amine residues in the enzyme. Five bifunctional crosslinkers in the form of X-spacer-X were used, differing by the reactive functional groups (X = aldehyde: -CHO, isothiocyanate: -NCS, isocyanate: -NCO), by the nature of the spacer chain (aromatic or aliphatic) or by the geometry (bifunctional groups positioned in meta- or para- on an aromatic ring). A thermostability enhancement has been obtained for enzymes immobilized using 1,4-phenylene diisothiocyanate (PDC) and 1,4-phenylene diisocyanate (DIC). Moreover, using the latter crosslinker, activity was the mostly preserved upon successive uses, thus giving the best operational stability achieved. Changing the geometry of the cross-linker, i.e., 1,4- as compared to 1,3-phenylene diisothiocyanate (PDC and MDC, respectively), has a crucial effect on operational and thermal stabilities. Indeed, among all used crosslinkers, the most important loss was observed for MDC (residual activity after 6 times use is similar to 16%). Using dialdehyde crosslinkers: glutaraldehyde (GA) and terephtalaldehyde (TE), activity was significantly less well preserved than with DIC and PDC (for GA and TE, a loss of about 50% at 30 degrees C against no loss for PDC and DIC). These effects can be explained by a multipoint attachment model, in which a higher number of anchoring points stabilizes the three-dimensional structure and especially the binding of the two subunits in the active dimer, at the expense of a greater rigidity which is detrimental to the absolute activity. The differences observed with the crosslinkers are mainly due to steric hindrance at the interface which seems to be greatly influenced by the structure and the reactivity of the linkers. (C) 2013 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available