4.5 Article

Laccase-poly(lactic-co-glycolic acid) (PLGA) nanofiber: Highly stable, reusable, and efficacious for the transformation of diclofenac

Journal

ENZYME AND MICROBIAL TECHNOLOGY
Volume 51, Issue 2, Pages 113-118

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.enzmictec.2012.05.001

Keywords

Diclofenac; Laccase; Nanofiber; Stability; Transformation

Funding

  1. Chonbuk National University

Ask authors/readers for more resources

Nanobiocatalysis has received growing attention for use in commercial applications. We investigated the efficiency, stability, and reusability of laccase-poly(lactic-co-glycolic acid) (PLGA) nanofiber for diclofenac transformation. N-H stretching vibrations (3400-3500 cm(-1) and 1560 cm(-1)) in FT-IR spectra confirmed immobilization of laccase on PLGA nanofibers. The relative activity of immobilized laccase was 82% that of free laccase. Immobilized laccase had better storage, pH, and thermal stability than free laccase. The immobilized laccase produced complete diclofenac transformation in three reuse cycles, which was extended to 6 cycles in the presence of syringaldehyde. Results suggest that laccase-PLGA nanofiber may be useful for removing diclofenac from aqueous sources and has potential for other commercial applications. (c) 2012 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available