4.3 Article

Inferring likelihoods and climate system characteristics from climate models and multiple tracers

Journal

ENVIRONMETRICS
Volume 23, Issue 4, Pages 345-362

Publisher

WILEY
DOI: 10.1002/env.2149

Keywords

computer model calibration; Bayesian hierarchical modeling; Gaussian process; computer experiments; multivariate spatial data; climate change

Funding

  1. National Science Foundation
  2. US Geological Survey
  3. Penn State Center for Risk Management
  4. Climate Science for a Sustainable Energy Future

Ask authors/readers for more resources

Characterizing the risks of anthropogenic climate change poses considerable statistical challenges. A key problem is how to combine the information contained in large-scale observational data sets with simulations of Earth system models in a statistically sound and computationally tractable manner. Here, we describe a statistical approach for improving projections of the North Atlantic meridional overturning circulation (AMOC). The AMOC is part of the global ocean conveyor belt circulation and transfers heat between low and high latitudes in the Atlantic basin. The AMOC might collapse in a tipping point response to anthropogenic climate forcings. Assessing the risk of an AMOC collapse is of considerable interest because it may result in major impacts on natural and human systems. AMOC projections rely on simulations from complex climate models. One key source of uncertainty in AMOC projections is uncertainty about background ocean vertical diffusivity (Kv), an important model parameter. Kv cannot be directly observed but can be inferred by combining climate model output with observations on the oceans (so-called tracers). Here, we combine information from multiple tracers, each observed on a spatial grid. Our two-stage approach emulates the computationally expensive climate model using a flexible hierarchical model to connect the tracers. We then infer Kv using our emulator and the observations via a Bayesian approach, accounting for observation error and model discrepancy. We utilize kernel mixing and matrix identities in our Gaussian process model to considerably reduce the computational burdens imposed by the large data sets. We find that our approach is flexible, reduces identifiability issues, and enables inference about Kv based on large data sets. We use the resulting inference about Kv to improve probabilistic projections of the AMOC. Copyright (c) 2012 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available