4.5 Article

Augmenting aquatic species sensitivity distributions with interspecies toxicity estimation models

Journal

ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY
Volume 33, Issue 3, Pages 688-695

Publisher

WILEY
DOI: 10.1002/etc.2456

Keywords

Aquatic toxicology; Species sensitivity distributions; Species extrapolation; Risk assessment

Funding

  1. USEPA, National Health and Environmental Effects Research Laboratory

Ask authors/readers for more resources

Species sensitivity distributions (SSDs) are cumulative distribution functions of species toxicity values. The SSD approach is being used increasingly in ecological risk assessment but is often limited by available toxicity data needed for diverse species representation. In the present study, the authors evaluate augmenting aquatic species databases limited to standard test species using toxicity values extrapolated from interspecies correlation estimation (ICE) models for SSD development. The authors compared hazard concentrations at the 5th centile (HC5) of SSDs developed using limited measured data augmented with ICE toxicity values (augmented SSDs) with those estimated using larger measured toxicity datasets of diverse species (reference SSDs). When SSDs had similar species composition to the reference SSDs, 0.76 of the HC5 estimates were closer to the reference HC5; however, the proportion of augmented HC5s that were within 5-fold of the reference HC5s was 0.94, compared with 0.96 when predicted SSDs had random species assemblages. The range of toxicity values among represented species in all SSDs also depended on a chemical's mode of action. Predicted HC5 estimations for acetylcholinesterase inhibitors showed the greatest discrepancies from the reference HC5 when SSDs were limited to commonly tested species. The results of the present study indicate that ICE models used to augment datasets for SSDs do not greatly affect HC5 uncertainty. Uncertainty analysis of risk assessments using SSD hazard concentrations should address species composition, especially for chemicals with known taxa-specific differences in toxicological effects. Environ Toxicol Chem 2014;33:688-695. (c) 2013 SETAC. This article is a US Government work and is in the public domain in the USA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available