4.5 Article

Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba

Journal

ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY
Volume 32, Issue 4, Pages 902-907

Publisher

WILEY
DOI: 10.1002/etc.2131

Keywords

Silver nanoparticles; Aquatic plant; Lemna gibba; Cellular viability; Reactive oxygen species

Funding

  1. Faculty of Sciences
  2. Department of Chemistry at University of Quebec in Montreal

Ask authors/readers for more resources

The toxicity effect of silver nanoparticles (AgNPs) on growth and cellular viability was investigated on the aquatic plant Lemna gibba exposed over 7 d to 0, 0.01, 0.1, 1, and 10mg/L of AgNPs. Growth inhibition was demonstrated by a significant decrease of frond numbers dependent on AgNP concentration. Under these conditions, reduction in plant cellular viability was detected for 0.1, 1, and 10mg/L of AgNPs within 7 d of AgNPs treatment. This effect was highly correlated with the production of intracellular reactive oxygen species (ROS). A significant increase of intracellular ROS formation was triggered by 1 and 10mg/L of AgNP exposure. The induced oxidative stress was related to Ag accumulation within L. gibba plant cells and with the increasing concentration of AgNP exposure in the medium. The authors' results clearly suggested that AgNP suspension represented a potential source of toxicity for L. gibba plant cells. Due to the low release capacity of free soluble Ag from AgNP dissolution in the medium, it is most likely that the intracellular uptake of Ag was directly from AgNPs, triggering cellular oxidative stress that may be due to the release of free Ag inside plant cells. Therefore, the present study demonstrated that AgNP accumulation in an aquatic environment may represent a potential source of toxicity and a risk for the viability of duckweeds. Environ. Toxicol. Chem. 2013;32:902907. (c) 2013 SETAC

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available