4.5 Article

PEROXIDASE-MEDIATED DEGRADATION OF PERFLUOROOCTANOIC ACID

Journal

ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY
Volume 28, Issue 2, Pages 264-271

Publisher

WILEY
DOI: 10.1897/08-282.1

Keywords

Peroxidase; Perfluorooctanoic acid; Radicals

Funding

  1. National Science Foundation Graduate Student Research Fellowship

Ask authors/readers for more resources

Concentrations of aqueous-phase perfluorooctanoic acid (PFOA), a representative perfluorinated aliphatic (PFA) compound, are shown to be reduced effectively via reaction with horseradish peroxidase (HRP), hydrogen peroxide, and a phenolic cosubstrate (4-methoxyphenol). Reaction rate profiles are pseudo-first order, yielding an apparent best-fit removal rate constant of k(1) = 0.003/min (r(2) = 0.96, n = 14). Approximately 68% depletion of the parent compound and 98% depletion of its related acute aquatic toxicity are achieved in 6 h. Because no PFOA removal is observed in the absence of cosubstrate and/or following consumption thereof, we conclude that radical intermediate species generated during reaction between HRP and 4-methoxyphenol mediate nonspecific depletion of PFOA and that these intermediates may be sufficiently reactive to sever the extremely stable C-F bonds of PFOA. These results are consistent with measurements of reaction by-products, including fluoride ion and various aliphatic species of shortened chain length. Based on these findings, we conclude that PFA degradation may occur via one of two mechanisms: Kolbe decarboxylation followed by stepwise conversion of -CF2 units to CO2 and fluoride ion, or radical abstraction from a double bond with subsequent fragmentation. Our results indicate that under appropriate conditions, enzymatic degradation may comprise a natural transformation pathway for PFAs. Moreover, we anticipate that appropriately engineered enzymatic processes may hold promise for treatment of PFOA-contaminated waters. This, to the best of our knowledge, is the first report to substantiate the efficacy of HRP-catalyzed reactions for contaminant removal via degradative reactions versus polymerization reactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available