4.5 Article

Metal distribution and metallothionein induction after cadmium exposure in the terrestrial snail helix aspersa (gastropoda, pulmonata)

Journal

ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY
Volume 27, Issue 7, Pages 1533-1542

Publisher

WILEY
DOI: 10.1897/07-232.1

Keywords

metallothionein; isoform; cadmium; distribution; metal

Ask authors/readers for more resources

The aim of the present work was to study the effect of Cd2+ exposure on metallothionein (MT) induction and on the distribution of metals (Cd, Cu, and Zn) in the terrestrial pulmonate Helix aspersa. In particular, the soluble and nonsoluble pools of the accumulated metals and their tissue distribution in uncontaminated and contaminated edible snails were investigated after a two-week exposure to Cd2+. In the soluble cytosolic pool of the midgut gland of H. aspersa, three metal-specific putative MT isoforms were separated following a fractionation protocol with diethylaminoethyl cellulose, size-exclusion chromatography, ultrafiltration, and reversed-phase high-performance liquid chromatography (RP-HPLC). Interestingly, one of the above isoforms seems to bind both Cd and Cu, which may in addition mobilize, after induction by Cd2+, some of the intracellular Cu and, thus, perhaps increase the Cu pool in the cytosolic fraction. The cDNA and its translated amino acid sequence of a Cd2+-binding MT isoform from the snail midgut gland was characterized and attributed to one of the putative MT isoforms obtained by RP-HPLC. The amino acid sequence of this Cd-MT isoform of H. aspersa differed from similar sequences described in other terrestrial pulmonates, such as Helix pomatia or Arianta arbustorum, by only a few amino acids (n = 4 and 8, respectively). That the identified Cd-MT from H. aspersa is inducible by Cd2+ also was shown, chromatographic evidence aside, by a specific polymerase chain reaction protocol on a cDNA basis, which included a noninducible housekeeping gene as a control.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available