4.5 Article

Spatial covariation of microbial community composition and polycyclic aromatic hydrocarbon concentration in a creosote-polluted soil

Journal

ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY
Volume 27, Issue 5, Pages 1039-1046

Publisher

WILEY
DOI: 10.1897/07-440.1

Keywords

phospholipid fatty acids; heterogeneity; geostatistics; polycyclic aromatic hydrocarbon degraders; autocorrelation

Ask authors/readers for more resources

Little is known about the spatial connection between soil microbial community composition and polycyclic aromatic hydrocarbon (PAH) concentration. A spatially explicit survey at a creosote-contaminated site demonstrated that microbial biomass (total concentration of phospholipid fatty acids [PLFAs]) and microbial community composition (PLFA fingerprints) were spatially autocorrelated, mostly within a distance of 25 m, and covaried with PAH concentrations. The concentration of PLFAs indicative of gram-negative bacteria (16:1 omega 7c, 16:1 omega 7t, 18:1 omega 7, cy17:0, and cy19:0) increased in the PAH hot spots, whereas PLFAs representing fungi and gram-positive bacteria (including actinomycetes) were negatively correlated to PAH concentrations. Most PLFAs were spatially autocorrelated, with distances varying between 4 and 25 m. Those PLFAs that increased in PAH-contaminated soil had autocorrelation ranges between 4 and 16 m, whereas the fungal indicator PLEA 18:2 omega 6,9 had the largest autocorrelation range (25 in). Bacterial strains isolated using a spray-plate technique and with the same PLFA composition as that in contaminated soil samples were capable of degrading phenanthrene, fluoranthene, and pyrene, indicating that the main PAH degraders could be isolated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available