4.4 Article

Pilot-scale treatment of olive oil mill wastewater by physicochemical and advanced oxidation processes

Journal

ENVIRONMENTAL TECHNOLOGY
Volume 34, Issue 12, Pages 1521-1531

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/09593330.2012.758663

Keywords

advanced oxidation processes; cost analysis; olive oil mill wastewater; pilot scale; physicochemical processes

Funding

  1. Uludag University Research Projects Department [M-2008/33]

Ask authors/readers for more resources

The pilot-scale treatability of olive oil mill wastewater (OOMW) by physicochemical methods, ultrafiltration and advanced oxidation processes (AOPs) was investigated. Physicochemical methods (acid cracking, oil separation and coagulation-flocculation) showed high efficiency of chemical oxygen demand (COD) (85%), oil and grease (O&G) (>97%), suspended solids (SS) (>99%) and phenol (92%) removal from the OOMW. Ultrafiltration followed by physicochemical methods is effective in reducing the SS, O&G. The final permeate quality is found to be excellent with over 90% improvements in the COD and phenol parameters. AOPs (ozonation at a high pH, O-3/UV, H2O2/UV, and O-3/H2O2/UV) increased the removal efficiency and the O-3/H2O2/UV combination among other AOPs studied in this paper was found to give the best results (>99% removal for COD,>99% removal for phenol and>99% removal for total organic carbon). Pilot-scale treatment plant has been continuously operated on site for three years (3 months olive oil production campaign period of each year). The capital and operating costs of the applied treatment alternatives were also determined at the end of these seasons. The results obtained in this study have been patented for 7 years by the Turkish Patent Institute.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available