4.4 Article

Recovery of zinc from hyperaccumulator plants: Sedum plumbizincicola

Journal

ENVIRONMENTAL TECHNOLOGY
Volume 30, Issue 7, Pages 693-700

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/09593330902894349

Keywords

hyperaccumulator; biomass; detoxify; leaching

Funding

  1. Department of Science and Technology of China
  2. Natural Science Foundation of China
  3. HuNan Agricultural Research Center, China

Ask authors/readers for more resources

Hyperaccumulator biomass harvested after heavy-metal phytoremediation must be considered as hazardous waste that should be contained or treated appropriately before disposal or reuse. As a potential method to detoxify the biomass and to convert this material to a suitable fertilizer or mulch, leaching of heavy metals from Sedum plumbizincicola biomass was studied by using ammonia-ammonium chloride solution as a leaching agent. The research was carried out in two phases: (i) a leaching study to determine the heavy metal:zinc extraction efficiency of this leaching agent and (ii) a thermodynamic analysis to identify the likely reactions and stable Zn(II) species formed in the leaching systems. Experimentally, a Taguchi orthogonal experiment with four variable parameter elements: leaching temperature, nNH4Cl:nNH3 ratio, leaching time and solid-liquid ratio, each at three levels, was used to optimize the experimental parameters by the analysis of variances. Application of the Taguchi technique significantly reduced the time and cost required for the experimental investigation. The findings indicate that leaching temperature had the most dominant effect on metal extraction performance, followed by nNH4Cl:nNH3 ratio, solid-liquid ratio and leaching time. Accordingly, the optimum leaching conditions were determined as temperature: 60C, nNH4Cl:nNH3 = 0.6, leaching time: 2 h and solid/liquid ratio: 5:1. The total zinc removal after leaching under the optimum conditions reached 97.95%. The thermodynamic study indicated that the dominant species produced by the leaching process should be the soluble species Zn(NH3)42+.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available