4.4 Article

ASSESSING STRUVITE PRECIPITATION IN A PILOT-SCALE FLUIDIZED BED CRYSTALLIZER

Journal

ENVIRONMENTAL TECHNOLOGY
Volume 29, Issue 11, Pages 1157-1167

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/09593330802075452

Keywords

Crystallization; fluidized bed reactor; solubility; struvite; supersaturation

Funding

  1. NSERC (Natural Science and Engineering Research Council of Canada)
  2. personnel in the Environmental Engineering Laboratory, University of British Columbia

Ask authors/readers for more resources

The recovery of phosphates from biological wastewater treatment plants, through struvite crystallization, minimizes operational downtime and offers the potential for cost-effective recovery. The pilot-scale, fluidized bed reactor developed at the University of British Columbia (UBC) was found to be effective in recovering phosphate in the form of nearly pure struvite product, from an anaerobic digester centrate. The desired degree of phosphate removal was achieved by maintaining operating pH 8.0-8.2, and recycle ratio 5-9, to control the supersaturation conditions inside the reactor. The performance of the system was found to be optimal when the in-reactor supersaturation ratio was 2-6. In-reactor magnesium to phosphate molar ratio was found to be an important parameter to maintain system performance. In-reactor ammonium to phosphate molar ratio was also found to maintain a good correlation with phosphate removal. The influence of organic ligands on the struvite precipitation was investigated for a small molecular weight organic ligand, acetate, using a chemical equilibrium model PHREEQC. An acetate concentration below about 100 mg l(-1) was not found to affect the precipitation potential of struvite. Calcium and carbonate ion did not have any noticeable effect in struvite crystallization of struvite, under the operational concentrations utilized. Since the precipitation of calcium and carbonate compounds was controlled by kinetic factors, rather than thermodynamic solubility alone, the solid precipitates harvested were pure struvite, with undetectable impurities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available