4.7 Article

Potential of guava leaves for mitigating methane emissions and modulating ruminal fermentation characteristics and nutrient degradability

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 25, Issue 31, Pages 31450-31458

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-018-3152-2

Keywords

Tree leaves; Methane emissions; Rumen fermentation; Nutrient degradability

Ask authors/readers for more resources

Guava leaves (Psidium guajava, GL), a high-phenolic- and flavonoid-containing plant resource capable of substituting the high-quality forage, may help in mitigating ruminal methane (CH4) emission without adverse impact on nutrient degradability if supplemented at an appropriate level. In order to test this hypothesis, rumen fermentation, CH4 production, and nutrient degradability of GL either solely or as a substitute of berseem hay (Trifolium alexandrinum, BH) were evaluated in a diet containing 50:50 concentrate to roughage. Five different levels of GL (0, 12.5, 25, 37.5, and 50%) were tested in vitro after 24 h incubation using a semi-automated gas production (GP) system. The current findings indicated that merely the presence of GL resulted in significantly lower values for cumulative GP (P < 0.001), CH4 emission (P < 0.05), truly degraded dry matter (TDDM; P < 0.001), truly degraded organic matter (TDOM; P < 0.001), and ammonia nitrogen (NH3-N) concentration (P < 0.001); however, pH (P < 0.001) and partitioning factor (P < 0.001) were higher. The total and individual volatile fatty acid (VFA) concentrations were drastically declined with GL as compared to BH (P < 0.05). A negative linear correlation was recorded between the levels of GL and GP including CH4 production (P < 0.05). The addition of GL up to 25% did not pose any negative effect on both TDDM and TDOM values along with NH3-N concentration. In addition, the inclusion of GL up to 25% did not affect the total or individual VFA concentration. Conclusively, in a medium concentrate diet, use of 25% GL and 25% BH in animal diet could be a promising alternative for mitigating the CH4 production without any deleterious effect on nutrient degradability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available