4.7 Article

Facile synthesis of magnetic ZnFe2O4-reduced graphene oxide hybrid and its photo-Fenton-like behavior under visible iradiation

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 21, Issue 12, Pages 7296-7306

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-014-2645-x

Keywords

ZnFe2O4; Graphene; Magnetic separation; Dye; Fenton; Peroxymonosulfate

Funding

  1. Anhui Provincial Natural Science Foundation [1308085MB21]
  2. National Natural Science Foundation of China [51372062]
  3. Technology Foundation for Selected Overseas Chinese Scholar of Anhui Province [2013AHST0415]
  4. State Key Laboratory of Materials-Oriented Chemical Engineering [KL13-12]
  5. Fundamental Research Funds for the Central Universities [2012HGQC0010]
  6. Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
  7. Australian Research Council [DP110103699]

Ask authors/readers for more resources

A magnetic ZnFe2O4-reduced graphene oxide (rGO) hybrid was successfully developed as a heterogeneous catalyst for photo-Fenton-like decolorization of various dyes using peroxymonosulfate (PMS) as an oxidant under visible light irradiation. Through an in situ chemical deposition and reduction, ZnFe2O4 nanoparticles (NPs) with an average size of 23.7 nm were anchored uniformly on rGO sheets to form a ZnFe2O4-rGO hybrid. The catalytic activities in oxidative decomposition of organic dyes were evaluated. The reaction kinetics, effect of ion species and strength, catalytic stability, degradation mechanism, as well as the roles of ZnFe2O4 and graphene were also studied. ZnFe2O4-rGO showed to be a promising photocatalyst with magnetism for the oxidative degradation of aqueous organic pollutants and simple separation. The combination of ZnFe2O4 NPs with graphene sheets leads to a much higher catalytic activity than pure ZnFe2O4. Graphene acted as not only a support and stabilizer for ZnFe2O4 to prevent them from aggregation, largely improving the charge separation in the hybrid material, but also a catalyst for activating PMS to produce sulfate radicals at the same time. The ZnFe2O4-rGO hybrid exhibited stable performance without losing activity after five successive runs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available