4.7 Article Proceedings Paper

Occurrence and distribution of heavy metals and tetracyclines in agricultural soils after typical land use change in east China

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 20, Issue 12, Pages 8342-8354

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-013-1532-1

Keywords

Heavy metals; Tetracyclines; Farmyard manure; Land use change; Cropping systems; Correlation analysis

Funding

  1. National Natural Science Foundation of China [40930739]
  2. National High-Technology Research and Development Program of China [2012AA06A204]

Ask authors/readers for more resources

Land use in east China tends to change from paddy rice to vegetables or other high-value cash crops, resulting in high input rates of organic manures and increased risk of contamination with both heavy metals (HMs) and antibiotics. This investigation was conducted to determine the accumulation, distribution and risks of HMs and tetracyclines (TCs) in surface soils and profiles receiving different amounts of farmyard manure. Soil samples collected from suburbs of Hangzhou city, Zhejiang province were introduced to represent three types of land use change from paddy rice to asparagus production, vineyards and field mustard cultivation, and divided into two portions, one of which was air-dried and sieved through 2-, 0.3- and 0.149-mm nylon mesh for determination of pH and heavy metals. The other portion was frozen at -20 A degrees C, freeze-dried and sieved through a 0.3-mm nylon mesh for tetracyline determination. HM and TC concentrations in surface soils of 14-year-old mustard fields were the highest with total Cu, Zn, Cd and aTCs of 50.5, 196, 1.03 mg kg(-1) and 22.9 mu g kg(-1), respectively, on average. The total Cu sequence was field mustard > vineyards > asparagus when duration of land use change was considered; oxytetracycline (OTC) and doxycycline were dominant in soils used for asparagus production; OTC was dominant in vineyards and chlortetracycline (CTC) was dominant in mustard soils. There were positive pollution relationships among Cu, Zn and aTCs, especially between Cu and Zn or Cu and aTCs. Repeated and excessive application of manures from intensive farming systems may produce combined contamination with HMs and TCs which were found in the top 20 cm of the arable soil profiles and also extended to 20-40 cm depth. Increasing manure application rate and cultivation time led to continuing increases in residue concentrations and movement down the soil profile.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available