4.7 Article

Polyfluoroalkyl phosphate esters and perfluoroalkyl carboxylic acids in target food samples and packaging-method development and screening

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 20, Issue 11, Pages 7949-7958

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-013-1596-y

Keywords

Polyfluoroalkyl phosphate esters (PAPs); diPAPs; Method development; UPLC/MS/MS; Food; Packaging material

Funding

  1. European Union through the PERFOOD project [KBBE-227525]

Ask authors/readers for more resources

Polyfluoroalkyl phosphate mono-, di-, and tri-esters (mono-, di-, and triPAPs) are used to water- and grease-proof food packaging materials, and these chemicals are known precursors to perfluoroalkyl carboxylic acids (PFCAs). Existing analytical methods for PAPs lack sample clean-up steps in the sample preparation. In the present study, a method based on ultra performance liquid chromatography coupled to tandem mass spectrometry (UPLC/MS/MS) was developed and optimized for the analysis of mono-, di-, and triPAPs, including a clean-up step for the raw extracts. The method was applied to food samples and their PAP-containing packaging materials. The optimized UPLC/MS/MS method enabled the separation and identification of a total of 4 monoPAPs, 16 diPAPs, and 7 triPAPs in the technical mixture ZonylA (R)-RP. For sample clean-up, weak anion exchange solid phase extraction columns were tested. PAPs standard solutions spiked onto the columns were separated into a fraction containing neutral compounds (triPAPs) and a fraction with ionic compounds (mono- and diPAPs) with recoveries between 72-110 %. Method limits of quantification for food samples were in the sub to low picogram per gram range. For quantitative analysis of PAPs, compound-specific labeled internal standards showed to be essential as sorption and matrix effects were observed. Mono-, di-, and/or triPAPs were detected in all food packaging materials obtained from the Swedish market. Up to nine diPAPs were detected in the food samples, with the 6:2/6:2 and 6:2/8:2 diPAPs as the dominant compounds. DiPAP concentrations in the food samples ranged from 0.9 to 36 pg/g, which was comparable to individual PFCA concentrations in the same samples. Consumption of food packed in PAP-containing materials could be an indirect source of human exposure to PFCAs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available