4.7 Article

Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 20, Issue 5, Pages 3011-3023

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-012-1208-2

Keywords

Competitive biosorption; Algae; Ion exchange model; Affinity constant; Kinetics

Funding

  1. Ministry of Water Resources/Center for the Restoration of Iraqi Marshlands

Ask authors/readers for more resources

The present study aims to evaluate the competitive biosorption of lead, cadmium, copper, and arsenic ions by using native algae. A series of experiments were carried out in a batch reactor to obtain equilibrium data for adsorption of single, binary, ternary, and quaternary metal solutions. The biosorption of these metals is based on ion exchange mechanism accompanied by the release of light metals such as calcium, magnesium, and sodium. Experimental parameters such as pH, initial metal concentrations, and temperature were studied. The optimum pH found for removal were 5 for Cd2+ and As3+ and 3 and 4 for Pb2+ and Cu2+, respectively. Fourier transformation infrared spectroscopy analysis was used to find the effects of functional groups of algae in biosorption process. The results showed that Pb2+ made a greater change in the functional groups of algal biomass due to high affinity to this metal. An ion exchange model was found suitable for describing the biosorption process. The affinity constants sequence calculated for single system was K (Pb) > K (Cu) > K (Cd) > K (As); these values reduced in binary, ternary, and quaternary systems. In addition, the experimental data showed that the biosorption of the four metals fitted well the pseudo-second-order kinetics model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available