4.7 Article

Long-term trends of continental-scale PCB patterns studied using a global atmosphere-ocean general circulation model

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 19, Issue 6, Pages 1971-1980

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-012-0943-8

Keywords

Polychlorinated biphenyls; Trans-Pacific transport; Long-range transport; Inter-continental transport; Persistent organic pollutants; Modelling

Funding

  1. European Commission [226534]

Ask authors/readers for more resources

Continental-scale distribution and inter-continental transport of four polychlorinated biphenyl (PCB) congeners (28, 101, 153, 180) from 1950 to 2010 were studied using the global multicompartment chemistry transport model MPI-MCTM. Following identical primary emissions for all PCB congeners into air, most of the burden is stored in terrestrial (soil and vegetation) compartments. Thereby, PCB-28, PCB-101 and PCB-153 show a shift of the soil burden maxima from source to remote regions. This shift is downwind with regard to the westerlies for Eurasia and upwind for North America and more prominent for the lighter PCBs than for PCB-153 or PCB-180. In meridional direction, all congeners' distributions underwent a northward migration in Eurasia and North America since the 1950s. Inter-continental transport from Eurasian sources accounts largely for contamination of Alaska and British Columbia and determines the migration of the PCB distribution in soil in North America. Trans-Pacific transport occurs mainly in the gas phase in boreal winter (December-January-February) at 3-4 km altitude and is on a multi-year time scale strongly linked to the atmospheric pressure systems over the Pacific. Inter-continental transport of the lighter, more volatile PCBs is more efficient than for the heavier PCBs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available