4.7 Article

Effect of particle size of titanium dioxide nanoparticle aggregates on the degradation of one azo dye

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 19, Issue 5, Pages 1652-1658

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-011-0669-z

Keywords

Azo dye; Titanium dioxide (TiO2); Photodegradation; Mineralization; Particle size

Funding

  1. National Science Council of Taiwan, R.O.C.

Ask authors/readers for more resources

Introduction Titanium dioxide (TiO2) nanoparticle powders have been extensively studied to quickly photodegrade some organic pollutants; however, the effect of the particle size of TiO2 nanoparticle aggregates on degradation remains unclear because microscale aggregates form once the nanoparticle powders enter into water. Methods The degradation of azo dye by different particle sizes of TiO2 nanoparticle aggregates controlled by NaCl concentrations was investigated to evaluate the particle size effect. Removal reactions of reactive black 5 (RB5) with TiO2 nanoparticles followed pseudo-first-order kinetics. Results The increase of TiO2 dosage from 40 to 70 mg/L enhanced the degradation. At doses around 100 mg/L TiO2, degradation rates decreased which could be the result of poor UV light transmittance at high-particle concentrations. At average particle sizes of TiO2 nanopowders less than around 500 nm, the degradation rates increased with decreasing particle size. As the average particle size exceeded 500 nm, the degradation rates were not significantly changed. Conclusions For the complete degradation experiments, the mineralization rates of total organic carbon disappearance are generally following the RB5 decolorization kinetic trend. These findings can facilitate the application of TiO2 nanoparticles to the design of photodegradation treatments for wastewater.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available