4.7 Article

Degradation and detoxification of acid orange 52 by Pseudomonas putida mt-2: a laboratory study

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 18, Issue 9, Pages 1527-1535

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-011-0511-7

Keywords

Pseudomonas putida mt-2; Biodegradation; Textile dyes; Detoxification; Acid orange 52

Funding

  1. Agence Universitaire de la Francophonie (AUF), Paris, France

Ask authors/readers for more resources

Introduction Acid orange 52 (AO52), extensively used in textile industries, was decolorized by Pseudomonas putida mt-2. AO52 azoreduction products such as N,N'-dimethyl-p-phenylenediamine (DMPD) and 4-aminobenzenesulfonic acid (4-ABS), were identified in the static degradation mixture. These amines were identified only in media of static incubation, which is consistent with their biotransformation under shaken incubation (aerobic conditions). Materials and methods Tests with azo products were carried out, and whole cells were found able to easily degrade DMPD contrary to 4-ABS. However, this last could be attacked by cell extract, and an oxygen uptake was observed during the reaction. Results Degradation of DMPD by entire cells led to the formation of catechol. These results show that P. putida was able to decolorize AO52 and metabolize its derivative amines. In addition, the ability of tested compounds was evaluated in vitro to reduce human plasma butyrylcholinesterase (BuChE) activity. Conclusion Azoreduction products seem to be responsible for BuChE inhibition activity observed in static biodegradation extract. However, toxicity of AO52 completely disappears after shaken incubation with P. putida, suggesting that bacterium has a catabolism which enables it to completely degrade AO52 and especially, to detoxify the dye mixture.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available