4.8 Article

Silver Nanoparticle Behavior, Uptake, and Toxicity in Caenorhabditis elegans: Effects of Natural Organic Matter

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 48, Issue 6, Pages 3486-3495

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es404444n

Keywords

-

Funding

  1. National Science Foundation (NSF)
  2. Environmental Protection Agency (EPA) under NSF, Center for the Environmental Implications of NanoTechnology (CEINT) [EF-0830093]
  3. National Institute of Health, Office of Research Infrastructure Programs [P40 OD010440]

Ask authors/readers for more resources

Significant progress has been made in understanding the toxicity of silver nanoparticles (Ag NPs) under carefully controlled laboratory conditions. Natural organic matter (NOM) is omnipresent in complex environmental systems, where it may alter the behavior of nanoparticles in these systems. We exposed the nematode Caenorhabditis elegans to Ag NP suspensions with or without one of two kinds of NOM, Suwannee River and Pony Lake fulvic acids (SRFA and PLFA, respectively). PLFA rescued toxicity more effectively than SRFA. Measurement of total tissue silver content indicated that PLFA reduced total organismal (including digestive tract) uptake of ionic silver, but not of citrate-coated Ag NPs (CIT-Ag NPs). The majority of the CIT-Ag NP uptake was in the digestive tract. Limited tissue uptake was detected by hyperspectral microscopy but not by transmission electron microscopy. Co-exposure to PLFA resulted in the formation of NOM-Ag NP composites (both in medium and in nematodes) and rescued (g)NO3- and CIT-Ag NP-induced cellular damage, potentially by decreasing intracellular uptake of CIT-Ag NPs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available