4.8 Article

Geochemical Processes Constraining Iron Uptake in Strategy II Fe Acquisition

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 48, Issue 21, Pages 12662-12670

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es5031728

Keywords

-

Funding

  1. Austrian Science Fund (FWF) [P 22798] Funding Source: researchfish
  2. Austrian Science Fund FWF [P 22798] Funding Source: Medline

Ask authors/readers for more resources

Phytosiderophores (PS) are natural chelating agents, exuded by graminaceous plants (grasses) for the purpose of Fe acquisition (Strategy II). They can form soluble Fe complexes with soil-Fe that can be readily taken up. PS are exuded in a diurnal pulse release, and with the start of PS release a window of iron uptake opens. In the present study we examined how this window is constrained in time and concentration by biogeochemical processes. For this purpose, a series of interaction experiments was done with a calcareous clay soil and the phytosiderophore 2'-deoxymugineic acid (DMA), in which metal and DMA speciation were examined as a function of time and DMA concentration. Various kinetically and thermodynamically controlled processes affected the size of the window of Fe uptake. Adsorption lowered, but did not prevent Fe mobilization by DMA. Microbial activity depleted DMA from solution, but not on time scales jeopardizing Strategy II Fe acquisition. Complexation of competing metals played an important role in constraining the window of Fe uptake, particularly at environmentally relevant PS concentrations. Our study provides a conceptual model that takes into account the chemical kinetics involved with PS-mediated Fe acquisition. The model can help to explain how success of failure of PS mediated Fe acquisition depends on environmental conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available