4.8 Article

Secondary Organic Aerosol Production from Aqueous Reactions of Atmospheric Phenols with an Organic Triplet Excited State

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 48, Issue 2, Pages 1049-1057

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es4045715

Keywords

-

Funding

  1. National Science Foundation [AGS-1036675]
  2. University of California Toxic Substances Research and Teaching Program (TSR&TP), through the Atmospheric Aerosols and Health Lead Campus Program
  3. California Agricultural Experiment Station [CA-D*-LAW-6403-RR]
  4. Directorate For Geosciences [1036675] Funding Source: National Science Foundation
  5. Div Atmospheric & Geospace Sciences [1036675] Funding Source: National Science Foundation

Ask authors/readers for more resources

Condensed-phase chemistry plays a significant role in the formation and evolution of atmospheric organic aerosols. Past studies of the aqueous photoformation of secondary organic aerosol (SOA) have largely focused on hydroxyl radical oxidation, but here we show. that triplet excited states of organic compounds (C-3*) can also be important aqueous oxidants. We studied the aqueous photoreactions of three phenols (phenol, guaiacol, and syringol) with the aromatic carbonyl 3,4-dimethoxybenzaldehyde (DMB); all of these species are emitted by biomass burning. Under simulated sunlight, DMB forms a triplet excited state that rapidly oxidizes phenols to form low-volatility. SOA. Rate constants for these reactions are fast and increase with decreasing pH and increasing methoxy substitution of the phenols. Mass yields of aqueous SOA are near 100% for all three phenols. For typical ambient conditions in areas with biomass combustion, the aqueous oxidation of phenols by C-3* is faster than by hydroxyl radical, although rates depend strongly on pH, oxidant concentrations, and the identity of the phenol. Our results suggest that C-3* can be the dominant aqueous oxidant of phenols in areas impacted by biomass combustion and that this is a significant pathway for forming SOA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available