4.8 Article

Combined Source Apportionment and Degradation Quantification of Organic Pollutants with CSIA: 1. Model Derivation

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 48, Issue 11, Pages 6220-6228

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es405400w

Keywords

-

Funding

  1. European Union under the seventh Framework Programme (project acronym CSI:ENVIRONMENT) [PITN-GA-2010-264329]

Ask authors/readers for more resources

Compound-specific stable isotope analysis (CSIA) serves as a tool for source apportionment (SA) and for the quantification of the extent of degradation (QED) of organic pollutants. However, simultaneous occurrence of mixing of sources and degradation is generally believed to hamper both SA and QED. On the basis of the linear stable isotope mixing model and the Rayleigh equation, we developed the stable isotope sources and sinks model, which allows for simultaneous SA and QED of a pollutant that is emitted by two sources and degrades via one transformation process. It was shown that the model necessitates at least dual-element CSIA for unequivocal SA in the presence of degradation-induced isotope fractionation, as illustrated for perchlorate in groundwater. The model also enables QED, provided degradation follows instantaneous mixing of two sources. If mixing occurs after two sources have degraded separately, the model can still provide a conservative estimate of the overall extent of degradation. The model can be extended to a larger number of sources and sinks as outlined. It may aid in forensics and natural attenuation assessment of soil, groundwater, surface water, or atmospheric pollution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available