4.8 Article

Kinetic, Electrochemical, and Microscopic Characterization of the Thermophilic, Anode-Respiring Bacterium Thermincola ferriacetica

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 47, Issue 9, Pages 4934-4940

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es400321c

Keywords

-

Funding

  1. Office of Naval Research Grant [N000141210344]

Ask authors/readers for more resources

Thermincola ferriacetica is a recently isolated thermophilic, dissimilatory Fe(III)-reducing, Gram-positive bacterium with capability to generate electrical current via anode respiration. Our goals were to determine the maximum rates of anode respiration by T. ferriacetica and to perform a detailed microscopic and electrochemical characterization of the biofilm anode. T. ferriacetica DSM 14005 was grown at 60 C on graphite-rod anodes poised at -0.06 V (vs) SHE in duplicate microbial electrolysis cells (MECs). The cultures grew rapidly until they achieved a sustained current density of 7-8 A m(-2) with only 10 mM bicarbonate buffer and an average Coulombic Efficiency (CE) of 93%. Cyclic voltarnmetry performed at maximum current density revealed a Nernst-Monod response with a half saturation potential (E-KA) of -0.127 V (vs) SHE. Confocal microscopy images revealed a thick layer of actively respiring cells of T. ferriacetica (similar to 38 mu m), which is the first documentation for a gram positive anode respiring bacterium (ARB). Scanning electron microscopy showed a well-developed biofilm with a very dense network of extracellular appendages similar to Geobacter biofilms. The high current densities, a thick biofilm (similar to 38 mu m) with multiple layers of active cells, and Nernst-Monod behavior support extracellular electron transfer (EET) through a solid conductive matrix - the first such observation for Gram-positive bacteria. Operating with a controlled anode potential enabled us to grow T. ferriacetica that can use a solid conductive matrix resulting in high current densities that are promising for MXC applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available